MyOOPS開放式課程
請加入會員以使用更多個人化功能
來自全球頂尖大學的開放式課程,現在由世界各國的數千名義工志工為您翻譯成中文。請免費享用!
課程來源:TED
     

 

Christina Warinner 談利用牙菌斑追踪古代疾病

Christina Warinner: Tracking ancient diseases using ... plaque

 

Photo of three lions hunting on the Serengeti.

講者:Christina Warinner

2012年2月演講,2012年4月在TED2012上線

 

翻譯:洪曉慧

編輯:朱學恆

簡繁轉換:洪曉慧

後製:洪曉慧

字幕影片後制:謝旻均

 

影片請按此下載

MAC及手持裝置版本請按此下載

閱讀中文字幕純文字版本

 

關於這場演講

試想我們能藉由研究從古代原始人到現代人的疾病歷史,瞭解哪些關於疾病的訊息。但該怎麼做?TED會員Christina Warinner是考古遺傳學家,她發現了一個驚人的新工具-牙菌斑化石中的微生物DNA。

 

關於Christina Warinner

Christina Warinner是蘇黎世大學研究員,研究人類如何與環境、飲食和疾病共同演化。

 

為什麼要聽她演講

Christina分析過去一萬年間古代人的骨骼和牙齒DNA,研究人類對傳染性疾病、飲食和環境變化產生的演化反應。她使用來自古代骨骼和木乃伊的樣本,研究世界各地不同人群的乳糖耐受性、酒精不耐症和愛滋病毒抵抗性的演化情形及原因。身為考古遺傳學家,她對建立考古學、人類學和生物醫學之間的橋樑特別感興趣。

 

Christina Warinner的英語網上資料

Home: Research profile

Home: Paleobot.org

 

[TED科技‧娛樂‧設計]

已有中譯字幕的TED影片目錄(繁體)(簡體)。請注意繁簡目錄是不一樣的。

 

Christina Warinner 談利用牙菌斑追踪古代疾病

 

你們是否想過你的牙菌斑裡有什麼?或許不曾,但像我這樣的人會這麼做。我是一位考古遺傳學家,任職於瑞士蘇黎世大學演化醫學中心。我藉由對古代人類骨骼和木乃伊遺骸進行基因研究,探索人類健康和疾病的起源和演化。藉由這項工作,我希望能更瞭解人體演化上的缺失,藉此改善並掌握人類未來的健康。

 

研究演化醫學有不同方法,一個辦法是從古人骨骼中萃取人類DNA,藉由這些萃取物,我們可以重建不同時代的人類基因組,尋找可能與適應環境有關的改變、風險因素和遺傳疾病,但這只是其中一部分。

 

當今人類面臨的最重要健康挑戰,不是由基因突變引起,而是由遺傳變異間複雜而動態的交互作用所導致,例如飲食、微生物、寄生蟲和人類的免疫反應,這所有的疾病都是強大的演化變因,與以下事實直接相關:我們目前生活的環境與人類演化過程中相當不同,為了瞭解這些疾病,我們必須改變過去單純研究人類基因組的做法,更全面性地研究過去人類的健康狀況。

 

但其中有很多挑戰,首先是,我們要用什麼來做研究?骨骼無所不在,世界各地都能找到,但,當然,所有軟組織都已腐爛。骨骼本身能提供的健康資訊有限,木乃伊是重要的資訊來源,但它有地域及年代的限制。糞石,就是人類糞便的化石,事實上它們相當有趣,你可以藉此學習到許多與古代飲食及腸道疾病有關的知識,但它們非常罕見。

 

(笑聲)

 

因此,為了解決這個問題,我在瑞士、丹麥和英國召集了一個國際研究小組,研究全世界人類身上都能發現的一種少有研究、鮮為人知的物質。它是一種牙菌斑化石,正式名稱是牙結石,大多數人或許稱它為牙垢,就是你每次洗牙時牙醫洗掉的東西。一般來說,洗牙時大約會洗掉15至30毫克的牙結石,但在古代,人類開始刷牙前,一生當中累積在牙齒上的牙結石高達600毫克。

 

牙結石真正的重要性在於,它就像骨骼以外部份形成的化石,在過去人類身上含量相當豐富,遍佈世界各地。在過去數萬年間,世界各地、每個時代的人類身上均有發現,甚至在尼安德塔人和動物身上也有發現。

 

所以之前的研究只著重於以顯微鏡觀察。人們在顯微鏡下觀察牙結石,他們發現一些東西,例如花粉和植物澱粉,他們也發現了動物的肌肉細胞和細菌,所以我的團隊想研究的是,是否能運用基因與蛋白質技術,尋找其中的DNA和蛋白質,藉此得到分類學上更佳的解答,真正明白這是怎麼回事。

 

我們發現許多生存在鼻腔和口腔的共生細菌和致病細菌,也發現與感染和發炎有關的免疫蛋白,以及與消化有關的蛋白質和DNA,但令我們吃驚、也相當令人興奮的是,我們也發現通常生存在上呼吸道系統的細菌。因此,它讓我們能想像肺部的情形,那是許多重要疾病發生之處。

 

我們也發現通常生存在腸道的細菌,所以我們現在能得知一些人體深處的器官系統資訊,這是很早以前就從骨骼上分解的部份,藉由將古代DNA序列及蛋白質質譜儀技術運用在古代牙結石上,我們可以得到大量數據,利用它重建一幅詳細的藍圖,描述幾千年前飲食、感染與免疫之間的動態交互作用。

 

因此,開始時,這只是一個想法,目前我們已利用它粗略得知數百萬個基因序列,並藉此調查長期以來人類健康和疾病的演化史,探究個別病原體的遺傳密碼。藉由這些資訊,我們得以瞭解病原體如何演化,以及它們為何能不斷地使我們生病。我希望能說服你們認可牙結石的價值。

 

最後,在結束前,我想請大家以未來考古學家的觀點思考,希望你們在回家刷牙之前,三思而後行。

 

(掌聲)

 

謝謝。

 

(掌聲)

 

以下為系統擷取之英文原文

About this Talk

Imagine what we could learn about diseases by studying the history of human disease, from ancient hominids to the present. But how? TED Fellow Christina Warinner is an achaeological geneticist, and she's found a spectacular new tool -- the microbial DNA in fossilized dental plaque.

About the Speaker

Christina Warinner is a researcher at the University of Zurich, where she studies how humans have co-evolved with environments, diets and disease. Full bio »

Transcript

Have you ever wondered what is inside your dental plaque? Probably not, but people like me do. I'm an archeological geneticist at the Center for Evolutionary Medicine at the University of Zurich, and I study the origins and evolution of human health and disease by conducting genetic research on the skeletal and mummified remains of ancient humans.And through this work, I hope to better understand the evolutionary vulnerabilities of our bodies, so that we can improve and better manage our health in the future.

There are different ways to approach evolutionary medicine, and one way is to extract human DNA from ancient bones. And from these extracts, we can reconstruct the human genome at different points in time and look for changes that might be related to adaptations, risk factors and inherited diseases. But this is only one half of the story.

The most important health challenges today are not caused by simple mutations in our genome, but rather result from a complex and dynamic interplay between genetic variation, diet, microbes and parasites and our immune response. All of these diseaseshave a strong evolutionary component that directly relates to the fact that we live today in a very different environment than the ones in which our bodies evolved. And in order to understand these diseases, we need to move past studies of the human genome aloneand towards a more holistic approach to human health in the past.

But there are a lot of challenges for this. And first of all, what do we even study? Skeletons are ubiquitous; they're found all over the place. But of course, all of the soft tissue has decomposed, and the skeleton itself has limited health information. Mummies are a great source of information, except that they're really geographically limited and limited in time as well. Coprolites are fossilized human feces, and they're actually extremely interesting.You can learn a lot about ancient diet and intestinal disease, but they are very rare.

(Laughter)

So to address this problem, I put together a team of international researchers in Switzerland, Denmark and the U.K. to study a very poorly studied, little known materialthat's found on people everywhere. It's a type of fossilized dental plaque that is called officially dental calculus. Many of you may know it by the term tartar. It's what the dentist cleans off your teeth every time that you go in for a visit. And in a typical dentistry visit, you may have about 15 to 30 milligrams removed. But in ancient times before tooth brushing,up to 600 milligrams might have built up on the teeth over a lifetime.

And what's really important about dental calculus is that it fossilizes just like the rest of the skeleton, it's abundant in quantity before the present day and it's ubiquitous worldwide.We find it in every population around the world at all time periods going back tens of thousands of years. And we even find it in neanderthals and animals.

And so previous studies had only focused on microscopy. They'd looked at dental calculus under a microscope, and what they had found was things like pollen and plant starches, and they'd found muscle cells from animal meats and bacteria. And so what my team of researchers, what we wanted to do, is say, can we apply genetic and proteomic technology to go after DNA and proteins, and from this can we get better taxonomic resolution to really understand what's going on?

And what we found is that we can find many commensal and pathogenic bacteria that inhabited the nasal passages and mouth. We also have found immune proteins related to infection and inflammation and proteins and DNA related to diet. But what was surprising to us, and also quite exciting, is we also found bacteria that normally inhabit upper respiratory systems. So it gives us virtual access to the lungs, which is where many important diseases reside.

And we also found bacteria that normally inhabit the gut. And so we can also now virtually gain access to this even more distant organ system that, from the skeleton alone, has long decomposed. And so by applying ancient DNA sequencing and protein mass spectrometry technologies to ancient dental calculus, we can generate immense quantities of data that then we can use to begin to reconstruct a detailed picture of the dynamic interplay between diet, infection and immunity thousands of years ago.

So what started out as an idea, is now being implemented to churn out millions of sequences that we can use to investigate the long-term evolutionary history of human health and disease, right down to the genetic code of individual pathogens. And from this information we can learn about how pathogens evolve and also why they continue to make us sick. And I hope I have convinced you of the value of dental calculus.

And as a final parting thought, on behalf of future archeologists, I would like to ask you to please think twice before you go home and brush your teeth.

(Applause)

Thank you.


留下您對本課程的評論
標題:
您目前為非會員,留言名稱將顯示「匿名非會員」
只能進行20字留言

留言內容:

驗證碼請輸入9 + 1 =

標籤

現有標籤:1
新增標籤:


有關本課程的討論

目前暫無評論,快來留言吧!

Creative Commons授權條款 本站一切著作係採用 Creative Commons 授權條款授權。
協助推廣單位: