MyOOPS開放式課程
請加入會員以使用更多個人化功能
來自全球頂尖大學的開放式課程,現在由世界各國的數千名義工志工為您翻譯成中文。請免費享用!
課程來源:TED
     

 

Sarah Bergbreiter 談為何我要製造米粒大小的機器人

Sarah Bergbreiter: Why I make robots the size of a grain of rice

 

Photo of three lions hunting on the Serengeti.

講者:Sarah Bergbreiter

2014年11月攝於TEDYouth 2014

 

翻譯:洪曉慧

編輯:朱學恒

簡繁轉換:洪曉慧

後制:洪曉慧

字幕影片後制:謝旻均

 

影片請按此下載

MAC及手持裝置版本請按此下載

閱讀中文字幕純文字版本

 

關於這場演講

藉由研究如螞蟻等昆蟲的運動情形和身體,Sarah Bergbreiter和她的團隊打造了相當強勁的超小型爬行機器人…然後在其上加入發射裝置。觀看他們在微型機器人領域令人驚嘆的發展,聆聽我們未來可能應用這些小幫手的三種方式。

 

關於Sarah Bergbreiter

Sarah Bergbreiter將先進技術應用到微型機器人上,使其克服高度達身長80倍的障礙。

 

為什麼要聽她演講

Sarah Bergbreiter掌管馬里蘭大學馬里蘭微型機器人實驗室,開發能提升醫療、消費電子及其他學科的創新技術。她於2008年進入馬里蘭大學,擔任機械工程助理教授。

 

她於普林斯頓獲得電子工程教育學理學士學位,於柏克萊攻讀碩士與博士學位,專研微型機器人。她因工作上的表現獲得多個獎項,包括2008年獲得DARPA(美國國防高等研究計劃署)青年教師獎,2013年獲得青年科學家和工程師總統獎。

 

Sarah Bergbreiter的英語網上資料

Maryland Microrobotics Lab

Department of Mechanical Engineering, University of Maryland

 

[TED科技‧娛樂‧設計]

已有中譯字幕的TED影片目錄(繁體)(簡體)。請注意繁簡目錄是不一樣的。

 

Sarah Bergbreiter 談為何我要製造米粒大小的機器人

 

我和我的學生們致力於研究微型機器人,你們可以將它想像成某種你們都很熟悉之生物的機器人版本-螞蟻。我們都知道螞蟻和其它大小類似的昆蟲能做到一些令人十分驚奇的事,例如我們都見過一群螞蟻或類似的昆蟲在野餐時搬走你的薯片。

 

但設計這些螞蟻大小的機器人真正的挑戰之處為何?首先,我們如何讓這種大小的機器人擁有螞蟻的功能?首先我們必須找出讓這麼小的機器人移動的方法,我們需要類似腿的機械裝置與高效馬達,以便支持移動功能。我們需要感應器、電源和控制系統,以便將所有功能整合在螞蟻大小的半智慧型機器人中。最後,為了讓這一切真正發揮作用,我們希望大量機器人共同合作,以便完成更重大的任務。

 

因此我先從移動性談起。昆蟲擁有驚人的移動能力,這段影片來自加州大學伯克萊分校,顯示一隻蟑螂在相當崎嶇的地形中流暢地穿梭。牠能做到這一點,是因為牠的腿部由我們通常用來製造機器人的堅硬材料組成,以及軟質材料。當體型很小時,跳躍是另一種令人感興趣的移動方式。例如這些昆蟲在類似彈簧的腿中儲存能量,然後快速釋放,以獲得躍出水面所需的高能量。

 

因此我實驗室的一大貢獻就是將硬質與軟質材料結合成相當微小的機械裝置。因此這個跳躍機械裝置每邊大約4毫米,相當微小。此處的硬質材料是矽,軟質材料是矽膠,其中的基本概念就是我們將它壓縮,將能量儲存於彈簧中,藉由能量的釋放達成跳躍的目標。因此現在這塊板子上沒有馬達和電源,驅動這個裝置的方法我們實驗室稱之為「手持鑷子的研究生」。(笑聲)因此在下一段影片中,你們將看到這傢伙展現出色的跳躍能力。因此這是Aaron剛剛提到的那位手持鑷子的研究生,你們看到的是一個4毫米大小的機械裝置,跳到幾乎40公分高,幾乎是本身長度的100倍。它毫髮無傷,在桌上彈跳,十分結實。毫髮無傷地跳耀著,直到消失蹤影,因為它實在太小了。

 

但我們最後還是想給它加上馬達。我們實驗室有研究微型馬達的學生,以便最終將它裝到這個小型自主式機器人上。但為了觀察這種微型裝置的活動性與移動力,我們作弊使用了磁鐵。因此這段影片顯示最終成為微型機器人腿部的部份。你可以看見矽膠製成的接合處,以及被外在磁場驅動的嵌入式磁鐵。

 

因此這組成了我之前向你們展示的機器人。最令人感興趣的是,這個機器人能幫助我們瞭解這種大小的昆蟲如何移動。我們有相當棒的模型來理解,小至蟑螂、大至大象等生物的移動方式。我們跑步時都是藉由這種彈跳方式移動,但當體型相當微小時,雙腳和地面之間的作用力對移動所造成的影響遠大於質量的影響,這就是導致彈跳式移動的原因。因此這傢伙的功能還不是很完美,但我們有稍微大一點的版本,確實能順暢地移動。這個的體積約一立方公分,每邊一公分,因此非常微小。我們能讓它以每秒十個身長的速度移動,也就是每秒10公分。對這麼小的東西來說相當快,僅因我們的測試裝置而有所限制,但這多少能讓你瞭解它的運作機制。我們也可用3D列印技術製作能跨越障礙的模型,很像你們之前見過的蟑螂。

 

但最終我們希望將所有元件安裝到機器人身上,我們希望結合感應、電源、控制、驅動等元件。並非所有元件都得是仿生材料,因此這個機器人的體積跟Tic Tac爽口糖差不多。在這個例子中,它並非藉由磁鐵或肌肉移動,而是藉由發射裝置。因此這是一片微型含能材料,我們能製造微型像素點,將其中一個微型像素點安裝在機器人腹部,當機器人感應到光線增強時就會跳躍。

 

因此下一段影片是我的最愛。你看見這個300毫克的機器人在空中跳躍到約8公分高,但它的體積只有4 × 4 × 7立方毫米。最初能量釋放時,你會看見一道閃光,然後機器人在空中翻騰。因此這是那道閃光,你可以看見機器人在空中翻騰。因此機器人身上沒有繩索或電線連接,所有元件都裝載於其上。這個學生只是打開旁邊的檯燈,它就產生跳躍反應。

 

因此我認為你能想像這種大小、能跑跳翻滾的機器人所能做的美妙應用。想像例如地震等天災後產生的碎石,想像這些微型機器人在碎石堆中穿梭尋找倖存者。或想像許多微型機器人在橋上奔跑進行檢查,確認其安全性,避免發生類似2007年的明尼亞波利斯橋面坍塌事件。或想像如果這些機器人能在血液中游動,你能如何應用這個功能,對嗎?如以撒.艾西莫夫在《聯合縮小軍》中的描述,或不必開刀就能動手術,或者我們能徹底改變建築方式。如果讓微型機器人以白蟻的方式工作,這是牠們建造的驚人土堆,高達八公尺,對非洲和澳洲的白蟻來說這是透氣性相當棒的住所。

 

因此我認為我已提出幾個應用微型機器人的可能性,目前我們已取得一些進展,但仍有很長的路要走,希望你們當中有人能為這個目標貢獻心力。

 

非常感謝。(掌聲)

 

以下為系統擷取之英文原文

About this Talk

By studying the movement and bodies of insects such as ants, Sarah Bergbreiter and her team build incredibly robust, super teeny, mechanical versions of creepy crawlies … and then they add rockets. See their jaw-dropping developments in micro-robotics, and hear about three ways we might use these little helpers in the future.

About this Speaker

Sarah Bergbreiter packs advanced technologies into tiny robots that can overcome obstacles 80 times their height. Full bio

Transcript

My students and I work on very tiny robots. Now, you can think of these as robotic versions of something that you're all very familiar with: an ant. We all know that ants and other insects at this size scale can do some pretty incredible things. We've all seen a group of ants, or some version of that, carting off your potato chip at a picnic, for example.

But what are the real challenges of engineering these ants? Well, first of all, how do we get the capabilities of an ant in a robot at the same size scale? Well, first we need to figure out how to make them move when they're so small. We need mechanisms like legs and efficient motors in order to support that locomotion, and we need the sensors, power and control in order to pull everything together in a semi-intelligent ant robot. And finally, to make these things really functional, we want a lot of them working together in order to do bigger things.

So I'll start with mobility. Insects move around amazingly well. This video is from UC Berkeley. It shows a cockroach moving over incredibly rough terrain without tipping over, and it's able to do this because its legs are a combination of rigid materials, which is what we traditionally use to make robots, and soft materials. Jumping is another really interesting way to get around when you're very small. So these insects store energy in a spring and release that really quickly to get the high power they need to jump out of water, for example.

So one of the big contributions from my lab has been to combine rigid and soft materials in very, very small mechanisms. So this jumping mechanism is about four millimeters on a side, so really tiny. The hard material here is silicon, and the soft material is silicone rubber. And the basic idea is that we're going to compress this, store energy in the springs, and then release it to jump. So there's no motors on board this right now, no power. This is actuated with a method that we call in my lab "graduate student with tweezers." (Laughter) So what you'll see in the next video is this guy doing amazingly well for its jumps. So this is Aaron, the graduate student in question, with the tweezers, and what you see is this four-millimeter-sized mechanism jumping almost 40 centimeters high. That's almost 100 times its own length. And it survives, bounces on the table, it's incredibly robust, and of course survives quite well until we lose it because it's very tiny.

Ultimately, though, we want to add motors to this too, and we have students in the lab working on millimeter-sized motors to eventually integrate onto small, autonomous robots. But in order to look at mobility and locomotion at this size scale to start, we're cheating and using magnets. So this shows what would eventually be part of a micro-robot leg, and you can see the silicone rubber joints and there's an embedded magnet that's being moved around by an external magnetic field.

So this leads to the robot that I showed you earlier. The really interesting thing that this robot can help us figure out is how insects move at this scale. We have a really good model for how everything from a cockroach up to an elephant moves. We all move in this kind of bouncy way when we run. But when I'm really small, the forces between my feet and the ground are going to affect my locomotion a lot more than my mass, which is what causes that bouncy motion. So this guy doesn't work quite yet, but we do have slightly larger versions that do run around. So this is about a centimeter cubed, a centimeter on a side, so very tiny, and we've gotten this to run about 10 body lengths per second, so 10 centimeters per second. It's pretty quick for a little, small guy, and that's really only limited by our test setup. But this gives you some idea of how it works right now. We can also make 3D-printed versions of this that can climb over obstacles, a lot like the cockroach that you saw earlier.

But ultimately we want to add everything onboard the robot. We want sensing, power, control, actuation all together, and not everything needs to be bio-inspired. So this robot's about the size of a Tic Tac. And in this case, instead of magnets or muscles to move this around, we use rockets. So this is a micro-fabricated energetic material, and we can create tiny pixels of this, and we can put one of these pixels on the belly of this robot, and this robot, then, is going to jump when it senses an increase in light.

So the next video is one of my favorites. So you have this 300-milligram robot jumping about eight centimeters in the air. It's only four by four by seven millimeters in size. And you'll see a big flash at the beginning when the energetic is set off, and the robot tumbling through the air. So there was that big flash, and you can see the robot jumping up through the air. So there's no tethers on this, no wires connecting to this. Everything is onboard, and it jumped in response to the student just flicking on a desk lamp next to it.

So I think you can imagine all the cool things that we could do with robots that can run and crawl and jump and roll at this size scale. Imagine the rubble that you get after a natural disaster like an earthquake. Imagine these small robots running through that rubble to look for survivors. Or imagine a lot of small robots running around a bridge in order to inspect it and make sure it's safe so you don't get collapses like this, which happened outside of Minneapolis in 2007. Or just imagine what you could do if you had robots that could swim through your blood. Right? "Fantastic Voyage," Isaac Asimov. Or they could operate without having to cut you open in the first place. Or we could radically change the way we build things if we have our tiny robots work the same way that termites do, and they build these incredible eight-meter-high mounds, effectively well ventilated apartment buildings for other termites in Africa and Australia.

So I think I've given you some of the possibilities of what we can do with these small robots. And we've made some advances so far, but there's still a long way to go, and hopefully some of you can contribute to that destination.

Thanks very much.

(Applause)

 


留下您對本課程的評論
標題:
您目前為非會員,留言名稱將顯示「匿名非會員」
只能進行20字留言

留言內容:

驗證碼請輸入6 + 5 =

標籤

現有標籤:1
新增標籤:


有關本課程的討論

目前暫無評論,快來留言吧!

Creative Commons授權條款 本站一切著作係採用 Creative Commons 授權條款授權。
協助推廣單位: