MIT OpenCourseWare


» 進階搜尋
 課程首頁
 教學大綱
 教學時程
 相關閱讀資料
 課堂講稿
 測驗
 相關資源

教學大綱


本頁翻譯進度

燈號說明

審定:邱富敏(簡介並寄信)
翻譯:溫榮弘(簡介並寄信)
編輯:汪仁傑(簡介並寄信)


教學大綱

分子自我組裝在自然界中是普遍存在的,而且最近已經在化學合成、奈米科技、聚合物科學、材料與工程上成為一種新型的方法。分子自我組裝系統橫跨分子生物、化學、聚合物科學、材料科學與工程之間的界面。

我們將專注在利用對不同背景的學生(生醫工程、生物、生物工程、生物物理、化學工程、材料科學與相關領域)有用的方式,來傳達基礎生物材料分子結構原理的脈絡。我們會利用生物構成的不同材料,如膠原蛋白、絲蛋白、羊毛、毛髮、骨頭、外殼、蛋白質黏著劑與螢光蛋白質來闡明關鍵的結構原理。而且,核酸、醣類與脂質類材料也會包括在內。重要的是此課程將運用分子結構原理來探討新型生物材料的分子設計。例如,自我組裝的胜肽設計將會從瞭解氨基酸的分子結構與特性的觀點來加以描述。

新材料與技術的發展通常會擴大我們能夠應付的問題,因此也加深了我們對似乎是棘手現象的瞭解。分子自我組裝系統將在分子層級上創造一種新材料類別。一般相信,運用這些簡單且多樣的分子自我組裝系統,將能夠提供給我們研究一些複雜與之前認為是棘手問題的生物現象的機會。藉由分子設計與生物建構區塊的自我組裝的分子工程,是一項可能將在未來科技上伴演越來越重要角色,而且將在未來幾十年內改變我們生活的可行科技。

教科書

Branden and Tooze《蛋白質結構的介紹》第二版,Garland Press, 1999.

其它參考資料(非必須)

Stryer, Lubert. 《生物化學》 New York: W. H. Freeman & Co., 2002.

Zubay, Geoffrey. 《生物化學》 Oxford, U.K.: W C. Brown Publishers, 1999.

Matthews, Christopher K. & K. E. Van Holde. 《生物化學》 Menlo Park, CA: Benjamin Cummings Pub Co., 1995.

Creighton, Thomas. 《蛋白質、結構與分子特性》. New York: W. H. Freeman & Co., 1993.

架構

授課是以日常安排的方式每週上二次課。很鼓勵討論。

會給予額外的獨創性研究論文以提供對不同課題的進一步瞭解。其它書目建議可做為選擇性的背景資料閱讀。

評分

一次期中考試:佔30%
期終計劃或論文評論:佔70%





Course Overview

Molecular self-assembly is ubiquitous in nature and has recently emerged as a new approach in chemical synthesis, nanotechnology, polymer science, materials and engineering. Molecular self-assembly systems lie at the interface between molecular biology, chemistry, polymer science, materials science and engineering.

We will focus on conveying basic molecular structural principles of biological materials in a context useful to students from various disciplines (biomedical engineering, biology, biological engineering, biophysics, chemical engineering, materials science, and related fields). Various materials of biological origin, such as collagens, silks, wool, hair, bone, shells, protein adhesives, and fluorescent proteins are used to illustrate the key structural principles. Also, nucleic acid, saccharide, and lipid-based materials will be included. Importantly, the class will address molecular design of new biological materials by application of the molecular structural principles. For example, the design of self-assembling peptides will be described from the perspective of understanding the molecular structure and properties of amino acids.

Development of new materials and technologies often broadens the questions we can address therefore deepen our understanding of seemingly intractable phenomena. Molecular self-assembly systems will create a new class of materials at the molecular level. It is believed that application of these simple and versatile molecular self-assembly systems will provide us with new opportunities to study some complex and previously intractable biological phenomena. Molecular engineering through molecular design and self-assembly of biological building blocks is an enabling technology that will likely play an increasingly important role in the future technology and will change our lives in the coming decades.

Textbook

Branden and Tooze. Introduction to Protein Structure. 2nd ed. Garland Press, 1999.

Additional References (not required)

Stryer, Lubert. Biochemistry. New York: W. H. Freeman & Co., 2002.

Zubay, Geoffrey. Biochemistry. Oxford, U.K.: W C. Brown Publishers, 1999.

Matthews, Christopher K. & K. E. Van Holde. Biochemistry. Menlo Park, CA: Benjamin Cummings Pub Co., 1995.

Creighton, Thomas. Proteins, Structures and Molecular Properties. New York: W. H. Freeman & Co., 1993.

Structure

Lectures are given twice a week in an informal class setting. Discussion is encouraged.

Additional original research papers are given to provide advanced understanding of various topics. Other texts are suggested as optional background reading.

Grading

One midterm: 30% of grade
Final project or review paper: 70% of grade




 
MIT Home
Massachusetts Institute of Technology Terms of Use Privacy