MIT OpenCourseWare


» 進階搜尋
 課程首頁
 教學大綱
 教學時程
 課堂講稿
 實作課程
 作業
 測驗
 研習資料

教學大綱


本頁翻譯進度

燈號說明

審定:無
翻譯:林彣(簡介並寄信)
編輯:侯嘉玨(簡介並寄信)

誰應該學習這門課程?

任何一位對聽覺感知和其潛藏的神經機制有興趣的人都該學習這門課程。這門課是語音和聽覺生物科學技術課程的研究所必修課程。對於修習電子工程與電腦科學或腦部與認知科學的學生且對聽覺感到好奇者,這門課是非常適當的選擇。修課者應通曉部分聽覺的週邊途徑(耳朵如何運作)和神經元的生物物理學,且之前已修過包含HST.714/6.551, HST.721, 6.521J/HST.541J或9.04.等課程。學生如不確定他們背景知識是否吻合,應先和開課教授商議。

本課程主要由幾個典型構成課程內容的專題所組織而成,各個專題皆包含授課、實驗操作和科學論文討論。這六個專題包括:

1. 遮蔽和頻率選擇性
2. 耳蝸神經核的細胞途徑
3. 雙耳的交互作用
4. 音高和時間編碼程式
5. 神經系統地圖和可塑性
6. 耳聾和聽力受損

以下是各個討論專題的標題提綱。



聽覺的介紹

聲音的偵測、定位和辨識。包含主觀與客觀的變數、實驗操作以及聽覺論證。

專題一:遮蔽和頻率選擇性

功能性的耳蝸機制:
  • 耳蝸的調音
  • 毛細胞傳導
  • 非線性
  • 耳蝸放大器
  • 耳聲傳射

聽神經的刺激編碼:

  • 聽神經為資訊導管
  • 頻率調音
  • 非線性
  • 聽神經活性與耳蝸處理的關聯
  • 以神經變異性為心理物理表現的限制
  • 複合動作電位

遮蔽和頻率選擇性:

  • 心理物理技巧
  • 訊息偵測理論
  • 遮蔽的功率頻譜模型
  • 測量聽覺濾波器的技術
  • 耳蝸非線性的心理物理影響

響度和強度感知:

  • 響度
  • 史帝芬斯定律
  • 強度辨別
  • 韋伯定律與其跡近錯失
  • 響度和強度的關聯


專題二:耳蝸神經核的細胞機制

管道、突觸和神經傳遞物質:
  • 興奮性與抑制性的突觸傳遞
  • 神經傳遞物質和接受體
  • 第二信使

耳蝸神經核的細胞機制:

  • 耳蝸神經核的平行處理途徑
  • 細胞型態與反映型式的關聯
  • 時間處理的神經特化現象


專題三:雙耳的交互作用

雙耳聽覺:
  • 定位和偏側性
  • 聲音定位的信號
  • 雙耳信號的敏感性
  • 傑弗里斯模型
  • 前置效應
  • 雙耳偵測

聽覺腦幹的雙耳交互作用:

  • 雙耳處理的神經迴路和細胞特化
  • 雙耳交互作用的兩種基本型式
  • 聽覺途徑中雙耳資訊的轉換


專題四:音高和時間編碼程式

音高:
  • 純音和複合音的音高
  • 擬似音高
  • 音高的空間與時間模式
  • 音高在聽覺景象分析的角色

音高的神經編碼:

  • 速率和時間編碼
  • 時間包絡和精細結構
  • 音高的峰電位間隔陳述
  • 調音的頻率調整與它在音高編碼的可能角色
  • 聽覺途徑的時間資訊轉換


專題五:神經系統地圖和可塑性

腦皮質結構:
  • 腦皮質區域和階層
  • 視丘-皮質和皮質-皮質投射
  • Tonotopy結構(察覺、接受和傳送聽覺的空間安排)
  • 柱狀結構
  • 平行和階層式處理
  • 腦皮質之功能

人類聽覺系統:

  • 影像型式:功能性磁振造影、腦磁圖、聽覺誘發電位
  • 人類聽覺皮質區之Tonotopy結構(察覺、接受和傳送的空間安排)
  • 途徑是什麼?在何處?
  • 腦部活化之耳鳴相關異常

神經系統地圖和特徵偵測器:

  • 蝙蝠的回聲定位
  • 蝙蝠聽覺皮質區的特徵偵測神經元
  • 約束問題


專題六:耳聾和聽力受損

聽覺受損的心理物理觀點:
  • 降低的頻率選擇性
  • 響度重振與非線性壓縮
  • 空間解析度

人工耳蝸植入:

  • 電極與處理器
  • 人工耳蝸植入患者的基本聽能
  • 電極組態的影響
  • 處理器設計
  • 雙耳植入


評分和作業

本課程的作業包含4個專題討論報告、3個實驗報告、約略3次的科學論文口頭報告及30篇左右的科學論文閱讀。此外,尚有期末考試。整體成績將依據下列評分標準評定:

30% 期末考試成績
30% 專題討論報告
25% 實驗報告
15% 科學論文口頭報告及平時課堂參與情況

專題討論報告在該次專題討論後一個星期內繳交

實驗報告在實驗結束後一星期內繳交

專題報告與口頭科學論文報告是大家較不熟悉的特別作業。




Who Should Take the Course?

Anyone interested in auditory perception and the underlying neural mechanisms. The course is required for graduate students in the Speech and Hearing Bioscience and Technology Program. It is also appropriate for students in Electrical Engineering and Computer Science or Brain and Cognitive Sciences with an interest in hearing. Some familiarity with peripheral mechanisms of hearing (how the ear works) and biophysics of neurons is expected. Appropriate prerequisites include HST.714/6.551, HST.721, 6.521J/HST.541J, or 9.04. Students unsure of their background should consult one of the instructors.

The course is organized by themes typically comprising lectures, laboratory exercises and discussions of scientific papers. The six themes include:

1. Masking and frequency selectivity
2. Cellular mechanisms in the cochlear nucleus
3. Binaural interactions
4. Pitch and temporal coding
5. Neural maps and plasticity
6. Deafness and hearing impairment

Below is an outline of the topics discussed within each theme.



Introduction to Hearing

Detection, localization and recognition of sounds. Subjective and objective variables and experiments. Auditory demonstrations.

Theme 1: Masking and Frequency Selectivity

Functional cochlear mechanics:
  • Cochlear tuning
  • Hair cell transduction
  • Nonlinearities
  • The cochlear amplifier
  • Otoacoustic emissions

Stimulus coding in the auditory nerve:

  • The AN as an information conduit
  • Frequency tuning
  • Nonlinearities
  • Relation of AN activity to cochlear processing
  • Neural variability as a limit on psychophysical performance
  • Compound action potential

Masking and frequency selectivity:

  • Psychophysical techniques
  • Signal detection theory
  • Power spectrum model of masking
  • Techniques for measuring auditory filters
  • Psychophysical effects of cochlear nonlinearities

Loudness and intensity perception:

  • Loudness
  • Stevens' law
  • Intensity discrimination
  • Weber's law and its near miss
  • Relation of loudness to intensity


Theme 2: Cellular Mechanisms in the Cochlear Nucleus

Channels, synapses, and neurotransmitters:
  • Excitatory and inhibitory synaptic transmission
  • Neurotransmitters and receptors
  • Second messengers

Cellular mechanisms in the cochlear nucleus:

  • Parallel processing pathways in the cochlear nucleus
  • Correlation of cell types with response types
  • Neural specializations for temporal processing


Theme 3: Binaural Interactions

Binaural hearing:
  • Localization and lateralization
  • Cues for sound localization
  • Sensitivity to binaural cues
  • The Jeffress model
  • The precedence effect
  • Binaural detection

Binaural interactions in the auditory brainstem:

  • Neural circuitry and cellular specializations for binaural processing
  • Two basic forms of binaural interactions
  • Transformations of binaural information in the auditory pathway


Theme 4: Pitch and Temporal Coding

Pitch:
  • Pitch of pure and complex tones
  • Virtual pitch
  • Place and temporal models of pitch
  • Role of pitch in auditory scene analysis

Neural coding of pitch:

  • Rate and temporal codes
  • Temporal envelope and fine structure
  • Interspike interval representation of pitch
  • Tuning to modulation frequency and its possible role in pitch coding
  • Transformations of temporal information in the auditory pathway


Theme 5: Neural Maps and Plasticity

Cortical organization:
  • Cortical areas and layers
  • Thalamo-cortical and cortico-cortical projections
  • Tonotopy
  • Columnar organization
  • Parallel and hierarchical processing
  • Functions of the cortex

The human auditory system:

  • Imaging modalities: fMRI, MEG, AEP
  • Tonotopy in human auditory cortex
  • What and where pathways
  • Tinnitus-related abnormalities in brain activation

Neural maps and feature detectors:

  • Echolocation in bats
  • Feature detector neurons in the bat auditory cortex
  • The binding problem


Theme 6: Deafness and Hearing Impairment

Psychophysical aspects of hearing impairment:
  • Reduced frequency selectivity
  • Loudness recruitment and nonlinear compression
  • Spatial resolution

Cochlear Implants:

  • Electrodes and processors
  • Basic auditory capabilities of implantees
  • Effect of electrode configuration
  • Processor design
  • Bilateral implants


Grading and Assignments

The assignments in this class consist of 4 written theme discussion reports, 3 written laboratory reports, approximately 3 oral paper presentations, and reading of some 30 papers. In addition, there will be a final examination. Your overall grade will be based approximately on the following:

30% Final exam
30% Written theme discussion reports
25% Laboratory reports
15% Oral paper presentations and class participation

Theme discussion reports are due one week after the last discussion session for the theme.

Laboratory reports are due one week after the lab session.

The theme reports and oral paper presentations are unusual assignments that you may be unfamiliar with.




 
MIT Home
Massachusetts Institute of Technology Terms of Use Privacy