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Lecture Packet #4: Continuity and Flow Nets 
 
 
 

Equation of Continuity 
 

• Our equations of hydrogeology are a combination of 
o Conservation of mass 
o Some empirical law (Darcy’s Law, Fick’s Law) 

 
• Develop a control volume, rectangular parallelepiped, REV (Representative 

Elementary Volume) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mass inflow rate – mass outflow rate = change in mass storage 
 

qx = specific discharge in x-direction (volume flux per area)  
at a point x,y,z  L3/L2-T 

 
Consider mass flow through plane y-z at (x,y,z) 
 

qx ρ dy dz L/T M/L3 L L = M/T 
 

Rate of change of mass flux in the x-direction per unit time per cross-section is 
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mass flow into the entry plane y-z is  
  

dydzdxq
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][][ ρρ
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And mass flow out of the exit plane y-z is 
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In the x-direction, the flow in minus the flow out is 
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Similarly, the flow in the y-direction through the plane dxdz (figure on left) 
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for the net y-mass flux. 
 
Similarly, we get for the net mass flux in the z-direction: 
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The total mass flux (flow out of the box) is 
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Let’s consider time derivative = 0 (Steady State System) 
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How does Darcy’s Law fit into this? 
 

x
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• For anisotropy (with alignment of coordinate axes and tensor principal 

directions), or hKq ∇−=
r

 
• Assuming constant density for groundwater 
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Steady-state flow equation for heterogeneous, anisotropic conditions: 
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For isotropic, homogeneous conditions (K is not directional) 
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This is the “diffusion equation” or “heat-flow equation” 
 

For Steady State (K cancels) ⎥
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This is called the Laplace equation. 
2∇ is the “Laplacian” operator. 
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Note that the full equation at this point can be written in summation notation as: 
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The first Equation (flow in the x direction) is: 
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What is the head distribution in a SS homogeneous system?  Consider solution to 
steady-state problem (1-Dimensional) 1D Confined Aquifer – Head Distribution 
 
K(x=0) = H0  and  h(x=L) = 0 
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Steady h distribution not f(K) – h is independent of K. 
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Flow Nets 
 
As we have seen, to work with the groundwater flow equation in any meaningful 
way, we have to find some kind of a solution to the equation.  This solution is based 
on boundary conditions, and in the transient case, on initial conditions. 
 
Let us look at the two-dimensional, steady-state case.  In other words, let the 
following equation apply: 
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A solution to this equation requires us to specify boundary condition.  For our 
purposes with flow nets, let us consider 
 

• No-flow boundaries ( 0=
∂
∂
n
h

, where n is the direction perpendicular to the 

boundary). 
• Constant-head boundaries (h = constant) 
• Water-table boundary (free surface, h is not a constant) 

 
A relatively straightforward graphical technique can be used to find the solution to 
the GW flow equation for many such situations.  This technique involves the 
construction of a flow net. 
 
A flow net is the set of equipotential lines (constant head) and the associated flow 
lines (lines along which groundwater moves) for a particular set of boundary 
conditions. 
 

• For a given GW flow equation and a given value of K, the boundary conditions 
completely determine the solution, and therefore a flow net.  

 
In addition, let us first consider only homogeneous, isotropic conditions:  
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Let’s look at flow in the vicinity of each of these boundaries.  (Isotropic, 
homogeneous conditions). 
 

No-Flow Boundaries: 0=
∂
∂
x
h

 or 0=
∂
∂
y
h

 or 0=
∂
∂
n
h

 

 
 
 
 
 
 
 
 

• Flow is parallel to the boundary. 
• Equipotentials are perpendicular to the boundary 

 
Constant-Head Boundaries: h = constant 
 
 
 
 
 
 
 
 
 
 
 

• Flow is perpendicular to the boundary. 
• Equipotentials are parallel to the boundary. 

 
Water Table Boundaries:  h=z 
 
Anywhere in an aquifer, total head is pressure head plus elevation head: 
   
 h = ψ + z 
 
However, at the water table, ψ  = 0.  Therefore, h = z 
 
 
 
 
 
 
 
 
 
Neither flow nor equipotentials are necessarily perpendicular to the boundary. 
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Rules for Flow Nets (Isotropic, Homogeneous System): 
 
In addition to the boundary conditions the following rules must apply in a flow net: 
 

1) Flow is perpendicular to equipotentials everywhere. 
2) Flow lines never intersect. 
3) The areas between flow lines and equipotentials are “curvilinear squares”.  In 

other words, the central dimensions of the “squares” are the same (but the 
flow lines or equipotentials can curve).  

• If you draw a circle inside the curvilinear square, it is tangential to 
all four sides at some point.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Why are these circles?  It preserves dQ along any stream tube.   
 
dQ = K dm; dh/ds = K dh 
 
 
 
 
 
 
 
 
 
 
 
If dm = ds (i.e. ellipse, not circle), then a constant factor is used. 
 
Other points: 
It is not necessary that flow nets have finite boundaries on all sides; regions of flow 
that extend to infinity in one or more directions are possible (e.g., see the figure 
above). 
 
A flow net can have “partial” stream tubes along the edge.  A flow net can have 
partial squares at the edges or ends of the flow system. 
 
Calculations from Flow Nets: 
It is possible to make many good, quantitative predictions from flow nets.  In fact, at 
one time flow nest were the major tool used for solving the GW flow equation.  
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Probably the most important calculation is discharge from the system.  For a system 
with one recharge area and one discharge area, we can calculate the discharge with 
the following expression: 
 
  Q = nfK dH  H = nd dH  
 
Gives:  Q = nf/nd KH 
 
Where Q is the volume discharge rate per unit thickness of section perpendicular to 
the flow net; nf is the number of stream tubes (or flow channels); nd is the number 
of head drops; K is the uniform hydraulic conductivity; and H is the total head drop 
over the region of flow.  
 

• Note that neither nf nor nd is necessarily an integer, but it is often helpful if 
you construct the flow net such that one of them is an integer. 

• If you choose nf as an integer, it is unlikely that nd will be an integer. 
• Note that to do this calculation, you do not need to know any lengths. 

 
Flow Nets in Anisotropic, Homogeneous Systems: 
 
Before construction of a flow net in an anisotropic system (Kx = Ky or Kx = Kz etc.), 
we have to transform the system. 
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Introduce the transformed variable 
 

z
K
K

Z
z

x=  

Applying this variable gives: 
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With this equation we can apply flownets exactly as we did before.  We just have to 
remember how Z relates to the actual dimension z. 
 
In an anisotropic medium, perform the following steps in constructing a flow net: 
 

1. Transform the system (the area where a flow net is desired) by the following 
ratio:  

x

z

K
K

ZZ '=  

where z is the original vertical dimension of the system (on your page, in cm, 
inches, etc.) and Z’ is the transformed vertical dimension.  
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Kx is the hydraulic conductivity horizontally on your page, and Kz is the hydraulic 
conductivity vertically on your page.  This transformation is not specific to the x-
dimension or the y-dimension. 
2. On the transformed system, follow the exact same principles for flow nets as 

outlined for a homogeneous, isotropic system. 
3. Perform the inverse transform on the system, i.e. 

x

z

K
K

ZZ '=  

4. If any flow calculations are needed, do these calculations on the 
homogeneous (step 2) section.  Use the following for hydraulic conductivity: 

zx KKK ='  

Where K’ is the homogeneous hydraulic conductivity of the transformed 
section.  (NOTE: This transformed K’ is not real!  It is only used for 
calculations on the transformed section.) 
 
Examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

h = 0 
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T I 
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Flow Nets in Heterogeneous Systems: 
 
We will only deal with construction of flow nets in the simplest types of 
heterogeneous systems.  We will restrict ourselves to layered heterogeneity. 
 
In a layered system, the same rules apply as in a homogeneous system, with the 
following important exceptions: 
 

1. Curvilinear squares can only be drawn in ONE layer.  In other words, in a two-
layer system, you will only have curvilinear squares in one of the layers.  
Which layer to draw squares in is your choice: in general you should choose 
the thicker/larger layer. 

2. At boundaries between layers, flow lines are refracted (in a similar way to the 
way light is refracted between two different media).  The relationship between 
the angles in two layers is given by the “tangent law”: 
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You can rearrange the tangent law in any way to determine one unknown quantity.  
For example, to determine the angle θ2: 
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One important consequence for a medium with large contrasts in K: high-K layers 
will often have almost horizontal flow (in general), while low-K layers will often have 
almost vertical flow (in general). 
 
Example: 
 
In a three-layer system, K1 = 1 x 10-3 m/s and K2 = 1 x 10-4 m/s.  K3 = K1.  Flow in 
the system is 14o below horizontal.  What do flow in layers 2 and 3 look like? 
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What is the angle in layer 3?  If you do the calculation, you will find it is 76o again.  
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When drawing flow nets with different layers, a very helpful question to ask is “What 
layer allows water to go from the entrance point to the exit point the easiest?”  Or, in 
other words, “What is the easiest (frictionally speaking) way for water to go from 
here to there?” 
 
 
 
 
 
 
 
 
 
 
 
 
 

10
2

1 =
K
K

 

 
 

K2 

K1 

K1 

K2 

K2 

K1 


