L2: Combinational Logic Design
(Construction and Boolean Algebra)

Acknowledgements:
Materials in this lecture are courtesy of the following people and used with permission.
- Randy H. Katz (University of California, Berkeley, Department of Electrical Engineering & Computer Science)
The Inverter

Truth Table

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Large noise margins protect against various noise sources

\[\text{NM}_L = V_{IL} - V_{OL} \]
\[\text{NM}_H = V_{OH} - V_{IH} \]
MOS Technology: The NMOS Switch

Switch Model

- **OFF**: $V_{GS} < V_T$
- **ON**: $V_{GS} > V_T$

NMOS ON when Switch Input is High
PMOS: The Complementary Switch

PMOS ON when Switch Input is Low
The CMOS Inverter

Switch Model

Rail-to-rail Swing in CMOS
There are 16 possible functions of 2 input variables:

In general, there are $2^{(2^n)}$ functions of n inputs.
<table>
<thead>
<tr>
<th>Gate</th>
<th>Symbol</th>
<th>Truth-Table</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND</td>
<td>![NAND Symbol]</td>
<td>![NAND Truth-Table]</td>
<td>$Z = X \cdot Y$</td>
</tr>
<tr>
<td>AND</td>
<td>![AND Symbol]</td>
<td>![AND Truth-Table]</td>
<td>$Z = X \cdot Y$</td>
</tr>
<tr>
<td>NOR</td>
<td>![NOR Symbol]</td>
<td>![NOR Truth-Table]</td>
<td>$Z = X + Y$</td>
</tr>
<tr>
<td>OR</td>
<td>![OR Symbol]</td>
<td>![OR Truth-Table]</td>
<td>$Z = X + Y$</td>
</tr>
</tbody>
</table>
Exclusive (N)OR Gate

XOR

\[(X \oplus Y)\]

\[\begin{array}{ccc}
X & Y & Z \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}\]

\[Z = X \overline{Y} + \overline{X} Y\]

X or Y but not both
("inequality", "difference")

XNOR

\[(X \oplus Y)\]

\[\begin{array}{ccc}
X & Y & Z \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}\]

\[Z = \overline{X} \overline{Y} + X Y\]

X and Y the same
("equality")

Widely used in arithmetic structures such as adders and multipliers
Generic CMOS Recipe

How do you build a 2-input NOR Gate?

Note: CMOS gates result in inverting functions! (easier to build NAND vs. AND)
Theorems of Boolean Algebra (I)

- Elementary
 1. $X + 0 = X$
 2. $X + 1 = 1$
 3. $X + X = X$
 4. $(\overline{X}) = X$
 5. $X + \overline{X} = 1$
 1D. $X \cdot 1 = X$
 2D. $X \cdot 0 = 0$
 3D. $X \cdot X = X$
 5D. $X \cdot \overline{X} = 0$

- Commutativity:
 6. $X + Y = Y + X$
 6D. $X \cdot Y = Y \cdot X$

- Associativity:
 7. $(X + Y) + Z = X + (Y + Z)$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

- Distributivity:
 8. $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

- Uniting:
 9. $X \cdot Y + X \cdot \overline{Y} = X$
 9D. $(X + Y) \cdot (X + \overline{Y}) = X$

- Absorption:
 10. $X + X \cdot Y = X$
 11. $(X + \overline{Y}) \cdot Y = X \cdot Y$
 10D. $X \cdot (X + Y) = X$
 11D. $(X \cdot \overline{Y}) + Y = X + Y$
Theorems of Boolean Algebra (II)

- **Factoring:**

 12. \((X \cdot Y) + (X \cdot Z) = X \cdot (Y + Z)\)

 12D. \((X + Y) \cdot (X + Z) = X + (Y \cdot Z)\)

- **Consensus:**

 13. \((X \cdot Y) + (Y \cdot Z) + (X \cdot Z) = X \cdot Y + X \cdot Z\)

 13D. \((X + Y) \cdot (Y + Z) \cdot (X + Z) = (X + Y) \cdot (X + Z)\)

- **De Morgan's:**

 14. \((X + Y + ...) = \overline{X} \cdot \overline{Y} \cdot ...

 14D. \((X \cdot Y \cdot ...) = \overline{X} + \overline{Y} + ...

- **Generalized De Morgan's:**

 15. \(f(X_1, X_2, ..., X_n, 0, 1, +, \cdot) = f(X_1, X_2, ..., X_n, 1, 0, \cdot, +)\)

- **Duality**

 - Dual of a Boolean expression is derived by replacing \(\cdot\) by +, + by \(\cdot\), 0 by 1, and 1 by 0, and leaving variables unchanged.

 - \(f (X_1, X_2, ..., X_n, 0, 1, +, \cdot) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \cdot, +)\)
Simple Example: One Bit Adder

1-bit binary adder
- inputs: A, B, Carry-in
- outputs: Sum, Carry-out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>S</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum-of-Products Canonical Form

S = \overline{A} \overline{B} \overline{Cin} + \overline{A} \overline{B} \overline{Cin} + \overline{A} \overline{B} \overline{Cin} + A \overline{B} \overline{Cin} + A B Cin

Cout = \overline{A} \overline{B} \overline{Cin} + A \overline{B} \overline{Cin} + A B \overline{Cin} + A B Cin

Product term (or minterm)
- ANDed product of literals – input combination for which output is true
- Each variable appears exactly once, in true or inverted form (but not both)
Simplify Boolean Expressions

\[\text{Cout} = \overline{A} B \overline{Cin} + A \overline{B} \overline{Cin} + A B \overline{Cin} + A B \overline{Cin} \]
\[= \overline{A} B \overline{Cin} + A \overline{B} \overline{Cin} + A B \overline{Cin} + A B \overline{Cin} + A B \overline{Cin} + A B \overline{Cin} \]
\[= (\overline{A} + A) B \overline{Cin} + A (\overline{B} + B) \overline{Cin} + A B (\overline{Cin} + \overline{Cin}) \]
\[= B \overline{Cin} + A \overline{Cin} + A B \]
\[= (B + A) \overline{Cin} + A B \]

\[S = \overline{A} B \overline{Cin} + A \overline{B} \overline{Cin} + A B \overline{Cin} + A B \overline{Cin} \]
\[= (A B + A B) \overline{Cin} + (A \overline{B} + A B) \overline{Cin} \]
\[= (A \oplus B) \overline{Cin} + (A \oplus B) \overline{Cin} \]
\[= A \oplus B \oplus \overline{Cin} \]
Sum-of-Products & Product-of-Sum

- **Product term** (or minterm): ANDed product of literals – input combination for which output is true

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>minterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\overline{A} \overline{B} \overline{C})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\overline{A} \overline{B} C)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(\overline{A} B \overline{C})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(A \overline{B} C)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(A \overline{B} \overline{C})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(A B \overline{C})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(A B C)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(A \overline{B} \overline{C})</td>
</tr>
</tbody>
</table>

F in canonical form:

\[F(A, B, C) = \sum m(1, 3, 5, 6, 7)\]

\[= m1 + m3 + m5 + m6 + m7\]

\[F = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + ABC\]

\[\text{canonical form} \neq \text{minimal form}\]

\[F(A, B, C) = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + ABC + ABC\overline{C}\]

\[= (A \overline{B} + \overline{A} B + AB + AB)C + ABC\overline{C}\]

\[= (((A + A)(\overline{B} + B))C + ABC\overline{C}\]

\[= C + ABC\overline{C} + C = AB + C\]

- **Sum term** (or maxterm) - ORed sum of literals – input combination for which output is false

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>maxterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(A + B + C)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(A + B + \overline{C})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(A + \overline{B} + C)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(A + \overline{B} + \overline{C})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(A + B + C)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(A + B + \overline{C})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(A + \overline{B} + C)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(A + \overline{B} + \overline{C})</td>
</tr>
</tbody>
</table>

F in canonical form:

\[F(A, B, C) = \prod \overline{M}(0, 2, 4)\]

\[= M0 \cdot M2 \cdot M4\]

\[= (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)\]

\[\text{canonical form} \neq \text{minimal form}\]

\[F(A, B, C) = (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)\]

\[= (A + B + C) (A + \overline{B} + C)\]

\[= (A + B + C) (\overline{A} + B + C)\]

\[= (A + C) (B + C)\]
Mapping Between Forms

1. **Minterm to Maxterm conversion:**
 rewrite minterm shorthand using maxterm shorthand
 replace minterm indices with the indices not already used

 E.g., $F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$

2. **Maxterm to Minterm conversion:**
 rewrite maxterm shorthand using minterm shorthand
 replace maxterm indices with the indices not already used

 E.g., $F(A,B,C) = \Pi M(0,1,2) = \Sigma m(3,4,5,6,7)$

3. **Minterm expansion of F to Minterm expansion of F':**
 in minterm shorthand form, list the indices not already used in F

 E.g., $F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$
 $F'(A,B,C) = \Sigma m(0,1,2) = \Pi M(3,4,5,6,7)$

4. **Minterm expansion of F to Maxterm expansion of F':**
 rewrite in Maxterm form, using the same indices as F

 E.g., $F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$
 $F'(A,B,C) = \Pi M(3,4,5,6,7) = \Sigma m(0,1,2)$
- Key tool to simplification: \(A(\overline{B} + B) = A \)

- Essence of simplification of two-level logic
 - Find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

\[
F = \overline{A} \overline{B} + AB = (\overline{A} + A)\overline{B} = \overline{B}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(B \) has the same value in both on-set rows
 - \(B \) remains

- \(A \) has a different value in the two rows
 - \(A \) is eliminated
Boolean Cubes

- Just another way to represent truth table
- Visual technique for identifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"
Mapping truth tables onto Boolean cubes

Uniting theorem

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Circled group of the on-set is called the adjacency plane. Each adjacency plane corresponds to a product term.

ON-set = solid nodes
OFF-set = empty nodes

A varies within face, B does not
this face represents the literal B

Three variable example: Binary full-adder carry-out logic

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\((\overline{A}+A)BC_{in}\) \(AB(\overline{C}_{in}+C_{in})\)

\(C_{out} = B_{cin} + AB + AC_{in}\)

The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that “111” is covered three times
Higher Dimension Cubes

F(A,B,C) = \Sigma m(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2 (2-D adjacency plane)

represents an expression in one variable
i.e., 3 dimensions - 2 dimensions
A is asserted (true) and unchanged
B and C vary

This subcube represents the literal A

- In a 3-cube (three variables):
 - 0-cube, i.e., a single node, yields a term in 3 literals
 - 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

- In general,
 - m-subcube within an n-cube (m < n) yields a term with n – m literals
Karnaugh Maps

- Alternative to truth-tables to help visualize adjacencies
 - Guide to applying the uniting theorem - On-set elements with only one variable changing value are adjacent unlike in a linear truth-table

 $\begin{array}{ccc}
 & A & B \\
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
 \end{array}$

- Numbering scheme based on Gray–code
 - e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)
K-Map Examples

Cout =

F(A,B,C) = \Sigma m(0,4,5,7)

F' simply replace 1's with 0's and vice versa

F'(A,B,C) = \Sigma m(1,2,3,6)

F' =
Four Variable Karnaugh Map

\[F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15) \]

\[F = C + \overline{A} \overline{B} D + \overline{B} \overline{D} \]

Find the smallest number of the largest possible subcubes that cover the ON-set

K-map Corner Adjacency Illustrated in the 4-Cube
K-Map Example: Don’t Cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so.

F(A,B,C,D) = \Sigma m(1,3,5,7,9) + \Sigma d(6,12,13)

F = \overline{A} D + \overline{B} \overline{C} D \quad \text{w/o don't cares}

F = \overline{C} D + \overline{A} D \quad \text{w/ don't cares}

By treating this DC as a "1", a 2-cube can be formed rather than one 0-cube.

In PoS form: F = D (\overline{A} + \overline{C})

Equivalent answer as above, but fewer literals.
Hazard

Static Hazards: Consider this function:

\[F = A \times \overline{C} + B \times C \]

A = B = 1

Implemented with MSI gates:
Fixing Hazards

The glitch is the result of timing differences in parallel data paths. It is associated with the function jumping between groupings or product terms on the K-map. To fix it, cover it up with another grouping or product term!

- In general, it is difficult to avoid hazards – need a robust design methodology to deal with hazards.