Student Name: ______________________________

Problem 1 (40 Points): ______________________
Problem 2 (42 Points): ______________________
Problem 3 (18 Points): ______________________
Total (100 Points): _________________________
Problem 1: Counters
Consider the following state transition table for a counter. Q2, Q1 and Q0 represent the current state of the counter and N2, N1 and N0 represent the next counter state.

<table>
<thead>
<tr>
<th>Q2</th>
<th>Q1</th>
<th>Q0</th>
<th>N2</th>
<th>N1</th>
<th>N0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Use K-maps to derive the MSP expressions for N2, N1 and N0 as a function of Q2, Q1 and Q0. (12 points)
(b) Draw the state transition diagram for the counter in part (a) starting with state 0 (states should be labeled Q2 Q1 Q0). (4 points)
(c) Implement the counter specified in part (a) using three T-Flip Flops (recall that a T-FF has a Toggle input and a Q output). Represent the functions T_2, T_1 and T_0 as a function of Q_2, Q_1 and Q_0 in a standard sum-of-products expression (but do not minimize). (12 points)
(d) Consider the following 12-bit counter implementation using three 74163 counters. Describe the key problem with this implementation and propose a fix. (6 points)

(e) Briefly explain three major differences between a 74163 and a 74393 counter. (6 points)

1.

2.

3.
Problem 2: VHDL of Sequential Circuits

(a) Complete the timing diagram for the following piece of code. Assume Q starts at 1 and that Q is a signal. Assume that all delays are negligible. (8 points)

```vhdl
process (reset, enable, clock, D)
  if (reset = '0') then
    Q <= '0';
  elsif (enable = '1' and clock = '1') then
    Q <= D;
  else
    Q <= Q;
  end if;
end process;
```

(b) Complete the timing diagram for the following piece of code. Assume Q starts at 1 and that Q is a signal. Assume that all delays are negligible. (8 points)

```vhdl
process (reset, clock)
  if (clock'event and clk = '0') then
    if (reset = '1') then
      Q <= 0;
    elsif (enable = '1')
      Q <= D;
    end if;
  end if;
end process;
```
(c) Show the circuit diagram for the following piece of code. Assume that QA and QB are signals. (6 points)

```vhdl
process (clock)
if (clock'event and clock = '1')
    QA <= D;
    QB <= QA;
end if;
end process;
```

(d) Complete the timing diagram for the following piece of code. Assume QA and QB are signals. Assume QB is initially 0. Assume that all delays are negligible. (8 points)

```vhdl
process (clock, D)
if (clock = '0')
    QA <= D;
else
    QA <= QA;
end if;

if (clock = '1')
    QB <= QA;
else
    QB <= QB;
end if;
end process;
```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity c74163 is
port (LDN, CLRN, P, T, CLK: in std_logic;
 D : in std_logic_vector (3 downto 0);
 count : out std_logic_vector (3 downto 0);
 RCO : out std_logic);
end c74163;

architecture behavior of c74163 is

signal count_internal : std_logic_vector (3 downto 0);

begin

 RCO <=
 count <= count_internal;

 process (CLK)
 if (CLK'event and CLK = '1')
 if (CLRN =
 elsif (LDN =
 elsif (count
 end if;
 end if;
end process;

end architecture behavior;
Problem 3: Timing and Memory

(a) Consider the following sequential circuit. Assume that the setup time for the edge-triggered register is 4ns, hold time is 3ns, the contamination delay is 1ns and propagation delay is 4ns. Identify the key problem with this circuit and propose a solution to fix it without modifying the clock. Assume that In is properly setup and held around the clock edge. (8 points)
(b) Consider the memory chip below (identical to the ‘6264, except for simplicity, the second enable pin is ignored and assumed to be always asserted). The chip is enabled when \bar{E} is low. Assume that both the minimum delay and propagation (t_{c-q}) delay for the registers is 1ns. Assume that the time from the transition of the tri-state control input to output being driven to 0 or 1 or Z is 2ns. If either output_enable_b (\bar{G}) or \bar{E} is pulled high, the memory chip tri-states the data bus after 4ns. **What is the minimum delay before the tristate control that must be added to avoid bus contention?** Hint: consider the simple timing shown below where interface transitions from a read access to a write access. (10 points)

![Memory Chip Diagram]

- Determine the minimum required delay for this part
- Memory Chip (~ 6264)
- Data
- Address