Review of Test 2 (see solutions for more details)

Problem 1:
\[P(X = 2c) = \frac{1}{2}, \quad P(X = \frac{1}{2}c) = \frac{1}{2} \quad \Rightarrow \quad EX = 2c(\frac{1}{2}) + \frac{1}{2}c(\frac{1}{2}) = 2c \]
\[EX_n = \left(\frac{2}{1}\right)^n c \]

Problem 2:
\[X_1, \ldots, X_n \]
\[n = 1000 \]
\[P(X_i = 1) = \frac{1}{2}, \quad P(X_i = 0) = \frac{1}{2} \]
\[\mu = EX = \frac{1}{2}, \quad \text{Var}(X_1) = p(1-p) = \frac{1}{4} \]
\[S_n = X_1 + \ldots + X_n \]
\[P(440 \leq S_n \leq k) = 0.5 \]

by the Central Limit Theorem:
\[\Phi\left(\frac{k - 500}{\sqrt{250}}\right) - \Phi\left(\frac{440 - 500}{\sqrt{250}}\right) = \Phi\left(\frac{k - 500}{\sqrt{250}}\right) - \Phi\left(-3.75\right) = \Phi\left(\frac{k - 500}{\sqrt{250}}\right) - 0.0001 = 0.5 \]

Therefore:
\[\Phi\left(\frac{k - 500}{\sqrt{250}}\right) = 0.5001 \quad \Rightarrow \quad k = 500 \]

Problem 3:
\[f(x) = \frac{\theta e^\theta}{x^{\theta+1}}I(x \geq e); \quad \psi(\theta) = \frac{\theta^n e^{n\theta}}{(\prod x_i)^{\theta+1}} \quad \max \]

Easier to maximize the log-likelihood:
\[\log \psi(\theta) = n \log(\theta) + n\theta - (\theta + 1) \log \prod x_i \]
\[\frac{n}{\theta} + n - \log \prod x_i = 0 \quad \Rightarrow \quad \theta = \frac{n}{\log \prod x_i - n} \]

Problem 5:
Confidence Intervals, keep in mind the formulas!
\[\bar{x} - c\sqrt{\frac{1}{n-1}(\bar{x}^2 - \bar{x}^2)} \leq \mu \leq \bar{x} + c\sqrt{\frac{1}{n-1}(\bar{x}^2 - \bar{x}^2)} \]

Find c from the T distribution with n - 1 degrees of freedom.
Set up such that the area between $-c$ and c is equal to $1 - \alpha$
In this example, $c = 1.833$

\[
\frac{n(x^2 - \mu^2)}{c_2} \leq \sigma^2 \leq \frac{n(x^2 - \mu^2)}{c_1}
\]

Find c from the chi-square distribution with $n - 1$ degrees of freedom.

Set up such that the area between c_1 and c_2 is equal to $1 - \alpha$
In this example, $c_1 = 3.325, c_2 = 16.92$

Problem 4:
Prior Distribution:

\[
f(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}
\]

\[
f(x_1, ..., x_n | \theta) = \frac{\theta^n e^{n \theta}}{(\prod x_i)^{\theta + 1}}
\]

Posterior Distribution:

\[
f(\theta | x_1, ..., x_n) \sim f(\theta) f(x_1, ..., x_n | \theta)
\]

\[
\sim \theta^{\alpha-1} e^{-\beta \theta} \frac{\theta^n e^{n \theta}}{(\prod x_i)^{\theta}} = \theta^{\alpha+n-1} e^{-\beta \theta + n \theta} e^{-\theta \log \prod x_i} = \theta^{\alpha+n-1} e^{-(\beta-n+\log \prod x_i) \theta}
\]

Posterior = \(\Gamma(\alpha + n, \beta - n + \log \prod x_i)\)

Bayes Estimator:

\[
\hat{\theta} = \frac{\alpha + n}{\beta - n + \log \prod x_i}
\]
Final Exam Format
Cumulative, emphasis on after Test 2.
9-10 questions.
Practice Test posted Friday afternoon.
Review Session on Tuesday Night - 5pm, Bring Questions!

Optional PSet:
pg. 548, Problem 3:
Gene has 3 alleles, so there are 6 possible combinations.
\(p_1 = \theta_1^2, p_2 = \theta_2^2, p_3 = (1 - \theta_1 - \theta_2)^2 \)
\(p_4 = 2\theta_1\theta_2, p_5 = 2\theta_1(1 - \theta_1 - \theta_2), p_6 = 2\theta_2(1 - \theta_1 - \theta_2) \)
Number of categories \(r = 6, s = 2 \).
2 Free Parameters.

\[T = \sum_{i=1}^{r} \frac{(N_i - np_i)^2}{np_i} \sim \chi^2_{r-s-1=3} \]

\[\psi(\theta_1, \theta_2) = \theta_1^{2N_1}\theta_2^{2N_2}(1 - \theta_1 - \theta_2)^{2N_3}(2\theta_1\theta_2)^{N_4}(2\theta_1(1 - \theta_1 - \theta_2))^{N_5}(2\theta_2(1 - \theta_1 - \theta_2))^{N_6} \]
\[= 2^{N_4+N_5+N_6}\theta_1^{2N_1+N_4+N_5}\theta_2^{4N_2+N_4+N_6}(1 - \theta_1 - \theta_2)^{2N_3+N_5+N_6} \]

Maximize the log likelihood over the parameters.
\[\log \psi = \text{const.} + (2N_1 + N_4 + N_5) \log \theta_1 + (2N_2 + N_4 + N_6) \log \theta_2 + (2N_3 + N_5 + N_6) \log(1 - \theta_1 - \theta_2) \]
Max over \(\theta_1, \theta_2 \rightarrow \)
\[\log \psi = a \]
\[\log \theta_1 + b \]
\[\log \theta_2 + c \]
\[\log(1 - \theta_1 - \theta_2) \]

\[\frac{\partial}{\partial \theta_1} = \frac{a}{\theta_1} - \frac{c}{1 - \theta_1 - \theta_2} = 0; \frac{\partial}{\partial \theta_2} = \frac{b}{\theta_2} - \frac{c}{1 - \theta_1 - \theta_2} = 0 \]

Solve for \(\theta_1, \theta_2 \)
\[\frac{a}{\theta_1} = \frac{b}{\theta_2} \rightarrow a\theta_2 = b\theta_1 \]
\[a - a\theta_1 - a\theta_2 - c\theta_1 = 0, a - a\theta_1 - b\theta_1 - c\theta_1 = 0 \rightarrow \]
\[\theta_1 = \frac{a}{a + b + c}, \theta_2 = \frac{b}{a + b + c} \]

Write in terms of the givens:
\[\theta_1 = \frac{2N_1 + N_2 + N_5}{2n} = \frac{1}{5}, \theta_2 = \frac{2N_2 + N_4 + N_6}{2n} = \frac{1}{2} \]

where \(n = \sum N_i \)
Decision Rule:
\[\delta = \{ H_1 : T \geq c, H_2 : T < c \} \]
Find c values from chi-square dist. with r - s - 1 d.o.f.
Area above c = \(\alpha \rightarrow c = 7.815 \)

Problem 5:
There are 4 blood types (O, A, B, AB)
There are 2 Rhesus factors (+, -)
Test for independence:

\[
\begin{array}{cccc}
	O & A & B & AB			
+	82	89	54	19
-	13	27	7	9
	95	116	61	28
\end{array}
\]

\[T = \frac{(82 - \frac{244(95)}{300})^2}{\frac{244(95)}{300}} + ... \]

Find the T statistic for all 8 cells.
\(\sim \chi^2_{(a-1)(b-1)} = \chi^2_3 \), and the test is same as before.

** End of Lecture 36**