Expectation of a random variable.

X - random variable
roll a die - average value = 3.5
flip a coin - average value = 0.5 if heads = 0 and tails = 1

Definition: If X is discrete, p.f. \(f(x) = p.f. \) of X,
Then, expectation of X is \(\mathbb{E}X = \sum x f(x) \)
For a die:

<table>
<thead>
<tr>
<th></th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
<th>1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\mathbb{E} = 1 \times \frac{1}{6} + \ldots + 6 \times \frac{1}{6} = 3.5 \)

Another way to think about it:

Consider each \(p_i \) as a weight on a horizontal bar.
Expectation = center of gravity on the bar.

If X - continuous, \(f(x) = p.d.f. \) then \(\mathbb{E}(X) = \int x f(x) dx \)
Example: \(X \) - uniform on [0, 1], \(\mathbb{E}(X) = \int_0^1 (x \times 1) dx = 1/2 \)

Consider \(Y = r(x) \), then \(\mathbb{E}(Y) = \sum_x r(x) f(x) \) or \(\int r(x) f(x) dx \)
p.f. \(g(y) = \sum_{\{x:y=r(x)\}} f(x) \)
\(\mathbb{E}(Y) = \sum_y y g(y) = \sum_y y \sum_{\{x:y=r(x)\}} f(x) = \sum_y \sum_{\{x:r(x)=y\}} y f(x) = \sum_y \sum_{\{x:r(x)=y\}} r(x) f(x) \)
then, can drop \(y \) since no reference to \(y \):
\(\mathbb{E}(Y) = \sum_x r(x) f(x) \)

Example: \(X \) - uniform on [0, 1]
\(\mathbb{E}(X^2) = \int_0^1 X^2 \times 1 dx = 1/3 \)

\(X_1, \ldots, X_n \) - random variables with joint p.f. or p.d.f. \(f(x_1 \ldots x_n) \)
\(\mathbb{E}(r(X_1, \ldots, X_n)) = \int r(x_1, \ldots, x_n) f(x_1, \ldots, x_n) dx_1 \ldots dx_n \)

Example: Cauchy distribution
p.d.f.:

\[
f(x) = \frac{1}{\pi(1 + x^2)}
\]

Check validity of integration:

\[
\int_{-\infty}^{\infty} \frac{1}{\pi(1 + x^2)} dx = \frac{1}{\pi} \tan^{-1}(x)\big|_{-\infty}^{\infty} = 1
\]

But, the expectation is undefined:
\[\mathbb{E}[X] = \int_{-\infty}^{\infty} |x| \frac{1}{\pi(1 + x^2)} \, dx = 2 \int_0^{\infty} \frac{x}{\pi(1 + x^2)} = \frac{1}{2\pi} \ln(1 + x^2) |_{0}^{\infty} = \infty \]

Note: Expectation of X is defined if \(\mathbb{E}[X] < \infty \)

Properties of Expectation:

1) \(\mathbb{E}(aX + b) = a\mathbb{E}(X) + b \)
 Proof: \(\mathbb{E}(aX + b) = \int (aX + b) f(x) \, dx = a \int xf(x) \, dx + b \int f(x) \, dx = a\mathbb{E}(X) + b \)

2) \(\mathbb{E}(X_1 + X_2 + ... + X_n) = \mathbb{E}X_1 + \mathbb{E}X_2 + ... + \mathbb{E}X_n \)
 Proof: \(\mathbb{E}(X_1 + X_2) = \int (x_1 + x_2) f(x_1, x_2) \, dx_1 \, dx_2 =\)
 \[= \int x_1 f(x_1, x_2) \, dx_1 \, dx_2 + \int x_2 f(x_1, x_2) \, dx_1 \, dx_2 =\]
 \[= \int x_1 \int f(x_1, x_2) \, dx_2 \, dx_1 + \int x_2 \int f(x_1, x_2) \, dx_1 \, dx_2 =\]
 \[= \int x_1 f_1(x_1) \, dx_1 + \int x_2 f_2(x_2) \, dx_2 = \mathbb{E}X_1 + \mathbb{E}X_2 \]

Example: Toss a coin n times, “T” on i: \(X_i = 1 \); “H” on i: \(X_i = 0 \).

Number of tails = \(X_1 + X_2 + ... + X_n \)

\(\mathbb{E}(\text{number of tails}) = \mathbb{E}(X_1 + X_2 + ... + X_n) = \mathbb{E}X_1 + \mathbb{E}X_2 + ... + \mathbb{E}X_n \)

\(\mathbb{E}X_i = 1 \times \mathbb{P}(X_i = 1) + 0 \times \mathbb{P}(X_i = 0) = p \), probability of tails

Expectation = \(p + p + ... + p = np \)

This is natural, because you expect np of n for p probability.

\(Y = \text{Number of tails} \), \(\mathbb{P}(Y = k) = \binom{n}{k} p^k (1-p)^{n-k} \)

\(\mathbb{E}(Y) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = np \)

More difficult to see though definition, better to use sum of expectations method.

Two functions, \(h \) and \(g \), such that \(h(x) \leq g(x) \), for all \(x \in \mathbb{R} \)

Then, \(\mathbb{E}(h(X)) \leq \mathbb{E}(g(X)) \rightarrow \mathbb{E}(g(X) - h(X)) \geq 0 \)

\(\int (g(x) - h(x)) \times f(x) \, dx \geq 0 \)

You know that \(f(x) \geq 0 \), therefore \(g(x) - h(x) \) must also be \(\geq 0 \)

If \(a \leq X \leq b \rightarrow a \leq \mathbb{E}(X) \leq \mathbb{E}(b) \leq b \)

\(\mathbb{E}(I(X \in A)) = 1 \times \mathbb{P}(X \in A) + 0 \times \mathbb{P}(X \notin A), \) for \(A \) being a set on \(\mathbb{R} \)

\(Y = I(X \in A) = \{1, \text{ with probability } \mathbb{P}(X \in A); 0, \text{ with probability } \mathbb{P}(X \notin A) = 1 - \mathbb{P}(X \in A) \}

\(\mathbb{E}(I(X \in A)) = \mathbb{P}(X \in A) \}

In this case, think of the expectation as an indicator as to whether the event happens.

Chebyshev’s Inequality

Suppose that \(X \geq 0 \), consider \(t > 0 \), then:

\[\mathbb{P}(X \geq t) \leq \frac{1}{t^2} \mathbb{E}(X) \]

Proof: \(\mathbb{E}(X) = \mathbb{E}(X) I(X < t) + \mathbb{E}(X) I(X \geq t) \geq \mathbb{E}(X) I(X \geq t) \geq \mathbb{E}(t) I(X \geq t) = t \mathbb{P}(X \geq t) \)

** End of Lecture 16 **