Bose condensation

1. Quasiparticles.

Consider a Bose gas at $T = 0$ with one quasiparticle with momentum $p \neq 0$ added on the top. Quasiparticle state can be obtained by applying the quasiparticle creation operator to the nonideal Bose gas ground state:

$$|1_p\rangle = \hat{b}_p^+ |0\rangle$$

where $\hat{b}_p^+ = \cosh \theta_p \hat{a}_p^+ - \sinh \theta_p \hat{a}_p$.

How many particles are contained in one quasiparticle? To find out, take the number operator $\hat{N} = \sum_k \hat{a}_k^+ \hat{a}_k$ of the original particles and evaluate the difference

$$\langle \hat{N}_p \rangle = \langle 1_p | \hat{N} | 1_p \rangle - \langle 0 | \hat{N} | 0 \rangle = 0$$

(Be careful: $\hat{b}_p^+ |0\rangle \neq 0$, instead $\hat{b}_p^+ |0\rangle = 0$.)

Express the answer in terms of the Bogoliubov angle θ_p.

Compare the situation at high and low quasiparticle energy and interpret the result.

2. Landau criterion for superfluidity.

Landau 超流體準則

A superflow state of a Bose condensate having velocity v is characterized by macroscopic occupancy of state with nonzero momentum $p = mv$. The many body state can be constructed by generalizing the scheme used to describe stationary condensates:

| Φ_v $\rangle = \exp(\sqrt{V} (\phi(x) \hat{a}_p - \bar{\phi}(x) \hat{a}_p^+))$, $\phi(x) = \phi \exp\left(\frac{i}{\hbar} px\right)$

(a) Starting from this state, consider the expectation value $\langle \Phi_v | H - \mu \hat{N} | \Phi_v \rangle$ and, by minimizing energy in ϕ, obtain the chemical potential μ of the superflow state. How does μ depend on the superflow velocity v?
b) Consider elementary excitations (quasiparticles) in the superflow state. The Bose gas hamiltonian expanded up to second order in a_k, a_k^*, has the form

$$H = E_0 + \sum_{k \neq 0} \left(\varepsilon_k^{(0)} - \mu + \lambda |\phi|^2 \right) a_k a_k^* + \frac{1}{2} \sum_{k \neq 0} (\phi^2 a_k^* a_{-p-k}^* + \bar{\phi}^2 a_k a_{-2p-k}^*)$$

(4)

To diagonalize this hamiltonian, group together the states with momenta k and $2p - k$.

Find the parameters θ_k that diagonalize the Hamiltonian, and obtain the quasiparticle dispersion relation $E(k)$. (Hint: Don’t let yourself be dragged into long calculation, the result can be more or less read off the solution for stationary BEC with slight adjustments.)

Find the critical superflow velocity ψ_c above which the energy of quasiparticles $E(k)$ can become negative. Landau argued that the superfluid can sustain nondissipative flows with velocities $\psi < \psi_c$, and in this way he could explain the phenomenon of critical velocity observed in superfluid 4He. At $E(k) > 0$ the quasiparticles cannot be created spontaneously, while at $\psi > \psi_c$ the flow is accompanied by massive quasiparticle creation, and is thus dissipative. Find the critical velocity ψ_c for nonideal Bose gas.

c) Can you interpret the result of part b) for quasiparticle dispersion in superflow from the point of view of a Galilean transformation? Note that the microscopic Hamiltonian is invariant with respect to changing the reference frame from stationary to moving, $x' = x + vt$, $t' = t$. Show that for an excitation with frequency ω and wavevector k this yields $\omega' = \omega - kv, k' = k$. How is the quasiparticle energy changed under a Galilean transformation?

3. Condensate depletion.

a) In a nonideal Bose gas at $T = 0$ only a fraction of all the particles is found in the condensate. The reduction of condensate density due to interactions is called “condensate depletion.” (An extreme example is provided by 4He, where the majority of the particles — more than 90% — are not in the condensate. To estimate this effect in a weakly nonideal Bose gas, find the expectation value of the total density.)
在 $T=0$ 時非理想玻色氣體中，只有一部分的粒子發生凝聚。凝聚密度的減少是由於稱為“凝聚損耗”的作用而產生的（一個極端的例子是 4He，其中大部分粒子（超過90%）不發生凝聚）。

為了評估弱非理想玻色氣體的效應，找出基態密度的期望值

$$\hat{n} = \hat{n}_0 + V^{-1} \sum_{k \neq 0} \hat{n}_k, \quad \hat{n}_k = \hat{a}_k^\dagger \hat{a}_k$$

(6)

over the ground state. The first term gives the condensate density $n_0 = \langle a_0^\dagger a_0 \rangle$, while the second term gives the density of the out-of-condensate particles. Find the depletion factor $(n-n_0)/n$ dependence on the coupling constant λ.

超過基態。第一項給出凝聚密度 $n_0 = \langle a_0^\dagger a_0 \rangle$，而第二項給出非凝聚粒子的密度。找出依賴於耦合常數 λ 的損耗因數 $(n-n_0)/n$。

b) Consider the correlator of the field operators $R(x,x') = \langle 0| \hat{\phi}^+(x) \hat{\phi}(x') |0 \rangle$. Show that it is related to the particle number distribution as $R(x-x') = \sum_k \langle 0| \hat{n}_k |0 \rangle e^{ik(x-x')}$. **Describe the behavior of $R(x-x')$ as a function of point separation** $x-x'$. Find the limits as $|x-x'| \to \infty$ and at $x-x'$. Estimate the length scale ξ, called *BEC healing length*, at which the crossover from $R(0)$ to $R(\infty)$ takes place.

考慮場算子 $R(x,x') = \langle 0| \hat{\phi}^+(x) \hat{\phi}(x') |0 \rangle$ 的相關，證明它與粒子數分佈

$$R(x-x') = \sum_k \langle 0| \hat{n}_k |0 \rangle e^{ik(x-x')}$$

有關。描述與點間距 $x-x'$ 有關的 $R(x-x')$ 的行為。找出 $x-x'$ 處的極限，當 $|x-x'| \to \infty$。估算長度因數 ξ （被稱為 *BEC恢復長度*），此處發生 $R(0)$ 到 $R(\infty)$ 的交疊。

4. Thermodynamics of a Bose gas

玻色氣體熱力學

Thermodynamics quantities of Bose-condensed gas can be found by treating the system as a gas of noninteracting Bogoliubov quasiparticles obeying Bose statistics. The thermodynamic potential of the system is

將系統當作服從玻色統計的無相互作用的 Bogoliubov 粒子，則可求得玻色凝聚氣體的熱力學。系

統的熱力學勢是，

$$\Omega = -T \ln Z = T \int \ln [1 - e^{-\beta E(k)}] \frac{d^3 k}{(2\pi)^3}, \quad E(k) = \sqrt{\varepsilon^{(0)}(k)(\varepsilon^{(0)}(k) + 2\lambda n)}$$

(7)

with $\varepsilon^{(0)}(k) = h^2 k^2 / 2m$.

其中，$\varepsilon^{(0)}(k) = h^2 k^2 / 2m$

a) Show that simple analytical results for the thermodynamic potential Ω can be obtained at Very low temperatures, $T << T_s \approx \hbar n$ and at moderately high temperatures, $T_s << T \leq T_{BEC}$. (Hint: Given the temperature, low or high, simplify the form of $E(k)$ by ignoring $\varepsilon^{(0)}(k)$ compared to $\hbar n$, or vice versa.)

證明熱力學勢 Ω 的簡單解析結果可以在極低溫， $T << T_s \approx \hbar n$ 及適度高溫 $T_s << T \leq T_{BEC}$ 下得到。（提示：考慮到溫度，高溫或低溫，忽略與 $\hbar n$ 可比擬的 $\varepsilon^{(0)}(k)$ 以簡化 $E(k)$ 的形式，反之亦然）
b) Find the entropy, the specific heat, and the normal component density $n(T)$ in the above two temperature intervals. Compare with the ideal Bose gas.

找出熵，比熱和上述兩個溫度區間下的正常成分密度 $n(T)$，並與理想玻色氣體作比較。